Preliminary communication

Preparation and structure of tricarbonyl {bis(ethoxycarbonyl)methyl}cyclohexadienylmanganese(I)

ANNE MAWBY

Department of Inorganic and Structural Chemistry, University of Leeds (Great Britain) P.J.C. WALKER^{*} and R.J. MAWBY^{**} Department of Chemistry, University of York (Great Britain) (Received March 31st, 1973; in revised form May 18th, 1973)

SUMMARY

X-Ray diffraction analysis of tricarbonyl {bis(ethoxycarbonyl)methyl} cyclohexadienylmanganese(I) has provided the first detailed information about the bonding of an *exo*-substituent added by nucleophilic attack on a coordinated arene.

Reaction of the arene complex $[(C_6H_6)Mn(CO)_3]^+$ with the anion $(EtO_2C)_2CH^$ at room temperature in ethanol yields the cyclohexadienyl complex exo- $\{C_6H_6CH(CO_2Et)_2\}-Mn(CO)_3$. The fact that the product is reconverted to $[(C_6H_6)Mn(CO)_3]^+$ by treatment with [Ph₃C] BF₄, which fails to remove the same substituent from the closely related exo-cyclohexadiene and exo-cycloheptatriene complexes $\{C_6H_7CH(CO_2Et)_2\}$ Fe $(CO)_3^-$ ¹ and $\{C_7H_7CH(CO_2Et)_2\}$ Cr $(CO)_3^-$ ² appears to indicate a marked weakness in the bonding between substituent and ring in $\{C_6H_6CH(CO_2Et)_2\}$ Mn $(CO)_3$. This is at odds with the only relevant crystallographic information, which is that the C–H bond between the ring and the added hydrogen atom in $(C_6H_7)Mn(CO)_3$ (obtained from $[(C_6H_6)Mn(CO)_3]^+$ and hydride ion) is unusually short³. We therefore decided to determine the structure of $\{C_6H_6CH(CO_2Et)_2\}$ Mn $(CO)_3$ by X-ray analysis, using a crystal grown from pentane solution.

Crystal data: $C_{16}H_{17}MnO_7$, orthorhombic, a = 25.24(1), b = 9.20(2), c = 14.89(2)Å, Z = 8. Space group *Pbcn*. Cu- K_{α} radiation. 1094 independent reflections were recorded by Weissenberg photography and estimated visually. The structure was solved by Patterson and Fourier techniques and refined by block diagonal least squares to R = 10.8%. Thermal parameters were anisotropic for the metal atom and isotropic otherwise: hydrogen atom positions were not determined. The structure of the complex is shown in Fig. 1.

* Present address: Department of Chemistry, University of Exeter.

****** Author to whom communications should be addressed.

Fig. 1.

Although the NMR spectrum of the complex in solution indicates the presence of a plane of symmetry passing through C^6 , C^9 , C^{10} and the manganese atom, this is lost in the solid state, presumably as a result of the packing requirements of the CH(CO₂Et)₂ group in the crystal lattice. Five ring carbon atoms (C^4 , C^5 , C^6 , C^7 , C^8) are almost exactly co-planar, while the remaining atom, C^9 , lies on the opposite side of this plane from the Mn(CO)₃ moiety. The plane makes an angle of 41° with that defined by C^8 , C^9 and C^4 . While the bonds and angles within the group of five co-planar atoms are those expected for sp^2 hybridization, the angle $C^8-C^9-C^4$ is less than the normal tetrahedral angle expected for sp^3 hybridization at C^9 , and the bond lengths C^8-C^9 and C^9-C^4 are greater than the expected values for $C(sp^2)-C(sp^3)$ bonds (1.51 Å).

PRELIMINARY COMMUNICATION

The bond between the exo-CH(CO₂Et)₂ substituent and the ring (C⁹-C¹⁰) is not significantly longer than a normal $C(sp^3)$ -C(sp³) bond (1.54 Å) nor shorter, as might be

expected³ from the data for $(C_6H_7)Mn(CO)_3$. The ease with which the substituent is removed is presumably associated with the relief of the strain indicated by the bond lengths and angles in the $C^8-C^9-C^4$ section of the ring.

ACKNOWLEDGEMENT

We thank I.C.I. for a grant to P.J.C.W.

REFERENCES

1 M.A. Hashmi, J.D. Munro, P.L. Pauson and J.M. Williamson, J. Chem. Soc. (A), (1967) 240.

2 P.L. Pauson, G.H. Smith and J.H. Valentine, J. Chem. Soc. (C), (1967) 1057.

3 M.R. Churchill and F.R. Scholer, Inorg. Chem., 8 (1969) 1950.